

Climate Change in the Crown of the Continent Ecosystem: Implications for Fisheries

Clint Muhlfeld

USGS Northern Rocky Mountain Science Center

Glacier National Park
West Glacier, Montana 59936
cmuhlfeld@usgs.gov
http://nrmsc.usgs.gov/staff/muhlfeld

Crown of the Continent Ecosystem

Aquatic Habitat

Aquatic Biota

Bull Trout – A threatened species

Bull Trout Migratory Life History

Spawning and incubation

Adult movements

Juvenile rearing

Subadult rearing

Westslope Cutthroat Trout – A Species of Special Concern

Westslope Cutthroat Trout

Westslope cutthroat trout display both migratory and resident life history strategies

Flathead River: A native species stronghold

Declines of Native Salmonids

Habitat alteration

A Landscape Undergoing Change

Western US – Observed Trends

Air Temperature Trends – Western Montana

Loss of ~ month of extremely cold days (< -18°C; 0°F)

3-fold increase in extremely hot days (>32°C; 90°F)

Air Temperature Trends – Western Montana

<u>1900-2006</u>

- +1.33°C rise in annual average temperatures
- ~1.8 times > +0.74°C rise in Global temperatures

Phase I: Broad-scale analysis of climate change and native trout persistence

- What kinds of climate associated stressors are likely to pose the greatest risk for native trout?
- Where are the highest risk impacts likely to occur?
- Where are the lowest risk areas?
- How do these climate-associated stressors interact with existing population status and habitat condition?

Focal species

Haak et al. *In-review*

Increased summer temperatures

Used trout historic distribution to define suitable temperatures for each fish based on PRISM temperature data

Applied 3°C increase to PRISM data

Categorized risk

Drought

Hoerling and Eischeid (2007) applied the Palmer Drought Severity Index to project drought 2035-2060

PDSI developed for plains states: does not capture the regional microclimates associated with mountainous terrain in the West

Used elevation (snowpack) and mean annual precipitation to mitigate

Uncharacteristic flooding

Areas transitioning from snow to rain experiencing uncharacteristic flooding events in west

Followed Hamlet and Lettenmaier (2007) to categorize basins as:

- Snow dominant
- Rain dominant
- Transient

Applied 3°C increase and re-categorized

Increased risk of fire

- Westerling et al (2006)
 found fires in west
 associated with timing of
 snow melt
- Earlier melt = more fires/ longer season due to increased drying
- Topographic zone of 1680 –2690 m
- Within topographic zone, further classified based on fuel types using Anderson Fire Behavior Fuel Model (Anderson 1982)

Composite
Climate
Change
Risk

Risks vary substantially from one species or subspecies to the next

- 39% of Bonneville cutthroat habitat at high risk of fire
- 17% of Colorado River cutthroat habitat at high risk

Coarse-scale Evaluation

As much as 65% of the habitat currently occupied by WCT will be at high risk due to climate change (warmer water, winter flooding, and increased wildfires) over the next 50 years.....

Winter Flood
Risk
to native
Westslope
cutthroat trout
in Glacier
National Park

Wildfire risk
to native
Westslope
cutthroat trout
in Glacier
National Park

Drought risk to native Westslope cutthroat trout in Glacier National Park

Better Downscaling Needed

How will global trends affect my stream?

Phase II: moving it to the ground: fine-scale evaluation of broad-scale findings

Fine-scale Approach

Model

Temperature Optima and Tolerance

Fish distributions and habitat suitability

FHR Weather Stations Yearly Mean Air Temps

FHR Climate Station Summer Mean Air Temps

Retrospective analysis:

1978-2007 Flathead

- ~1°C increase in annual air temps
- ~1.25°C for summer

FHR Climate Stations Summer MWMT Air Temps

Flathead River Watershed

Stream Temperature Database 250 unique locations 12 year period (1998 – 2009)

<u>Watershed Characteristics</u> Elevation range 880 – 3,080 m Watershed area = 14,300 km²

Stream Temperature Model

Model Parameters

Slope
Elevation
Lake Influence
Drainage Area
Latitude
Fire
Discharge
Snow/Ice

Hydrology

Spatial Statistical Models for Stream Networks

Projected climate changes to the hydrologic cycle in the Rocky Mountains

VIC Output

Invasive Species

Hybridization

- Loss of co-adapted gene complexes and ecological adaptations
- Threatens the persistence of many rare and endangered species

1984

• Low levels of introgression in 2 of 14 sites (14%)

2002

New introgression in 7 of 12 sites (58%)

Hybridization Rapidly Reduces Fitness

Muhlfeld et al. (2009) CJFAS

Hybridization Changes Behavioral Characteristics

Model Results

Distribution

Logistic regression (AIC):

Variables	В	S.E.	
Mean temperature	0.955	0.56	
Distance to source	-0.103	0.043	
Number of road			
crossings	0.128	0.086	
Constant	-3.532	4.64	
Model 2			
Mean temperature	1.104	0.584	
Distance to source	-0.099	0.047	
Constant	-4.131	4.518	

Proportion Admixture

Linear regression (AIC):

Variables	В	S.E.	
Model 1			
		0.12	
Mean temperature	0.242 1		
		0.00	
Distance to source	-0.072 9		
Constant	-1.39 1.559		
Model 2			
Mean temperature	0.251	0.111	
	-0.06		
Distance to source	5	0.009	
Density	6.376	3.422	
Constant	-2.512	1.551	
Model 3			
Distance to source	-0.077	0.009	
Constant	1.586	0.506	
Model 4			
Distance to source	-0.071	0.01	
Biotarioc to occirco			
Density	6.017	3.923	

Stream Temperature Model

Predictor variables:

- Fire
- Lake
- Air temp
- Area
- Elevation
- Solar radiation

Stream Temperature

<9.0 Celsion</p>

>9.0 Cobins

Stream Temperature

>9.0 Cobins

• <9.0 Cebius • >9.0 Cebius

Stream Temperature

>9.0 Cobsins

1°C increase Percent habitat >17°C MWMT (15 Jul – 15 Sep) 39%

2°C increase

Percent habitat >17°C MWMT (15 Jul – 15 Sep)

45%

3°C increase

Percent habitat >17°C MWMT (15 Jul – 15 Sep)

63%

4°C increase

Percent habitat >17°C MWMT (15 Jul – 15 Sep)

80%

Fall-Winter flooding

Mitigating Impacts of a Warming Climate

Thermal and hydrological measures:

•Maintain/restore riparian integrity, instream flows, & manage distribution/

intensity of human induced wildfires

Flathead River IFIM Study:

Mitigating Impacts of a Warming Climate

Biological measures:

Barriers, assisted migrations/translocations

Maintain diverse, productive habitats & populations

Nonnative species control

Decision Support Tools for Managers

Need: Regional Assessment of Aquatic Species Vulnerabilities and Responses to Climate Change

Research and monitoring:

- Temperature (air and water) and flow monitoring
- Temperature and flow modeling at different scales and techniques
- Vulnerability assessments for native and nonnative aquatic biota and critical habitats, using an ecosystem approach
- Forecasting nonnative invasive species interactions
- Predicting impacts to landscape connectivity and genetic diversity

Are We Too Optimistic?

