Climate Change: Implications for Forest Dynamics

Dr. Lori Daniels Department of Geography University of British Columbia

Collaborators: Jed Cochrane, Robert Gray and Rick Kubian

Presented at 2010 Crown Managers Forum: Fernie, BC April 2010

Historical Fire Regimes in Mountain Ecosystems

Alpine tundra

Subalpine forest

Interior Montane rainforest forests

Grassland-woodland

Montane Spruce Forests: NDT3 – stand-replacing fire, 150 yrs – even-aged, pine-dominated – Wildfires in late 1800s – Mining era 1858-1920 – Industrial logging 1950-present

Montane Spruce Forests in the East Kootenays

Structurally complex stands = 25% of montane forests

Crossdated Fire Records

Fire records

 30 sites
 >250 trees
 >400 scars

 Return Interval local scale regional scale

Site-Level Fire Chronologies

Start dates: 1449 to 1828 Median fire intervals: 10 to 26 yrs Interval range: 2 to 123 yrs

1770-1857: pre-settlement 1858-1944: settlement 1945-2006: modern era

1509-1944 1 fire every 3 years

1945-2006 Expected c. 20 scars Observed 6 scars

Contributing factors:
fire exclusion/suppression
cessation of burning by First Nations
climate variation

Daniels et al. 2007, Cochrane 2007

Drought-Fire 1700-1970

No fires (n = 196)

All fires (n = 74)

Regional fires (n = 18)

Years relative to fire

Global Climate and the Kootenays

"teleconnections"

Global Climate and Fire

	+AMO	- AMO	PDO AMO
+ PDO	El Niño	El Niño La Niña	El Niño-La Niña
- PDO	Few fires	La Niña	

- 1900-22 highly susceptible to fire
- 1923-43 more fires during El Niños
- 1944-66 less conducive to fire
- Since 1981 more fires during El Niños (e.g. 2003)

Fire Effects on Forest Dynamics

Survival of understory trees in absence of low severity fires + self thinning = departed from NRV

Fire Effects on Forest Dynamics

Stand establishment following severe fire in 1911 Evidence of mixed severity regime, within NRV

Climate-Fire-Mountain Pine Beetle Interactions ?

increased fuels due to tree mortality + high fire risk during regional droughts

Prescribed Fire Kootenay National Park May 31 2008

Fire and Mountain Pine Beetle Operational Prescribed Burn Kootenay National Park

No MPB	Red Attack	1980s MPB
100% mortality	98% mortality	100% mortality
22% loss logs	29% loss logs	51% loss logs
24% loss snags	16% loss snags	44% loss snags
0.11m/sec	0.13m/sec	0.46m/sec
FI < predicted	FI < predicted	FI 2-10x predicted

Lessons learned ...

Historical fires in mountains

 low to high frequency + severity

- Climate influences on fire
 global climate influences drought and fires
- Human influences on fire

 fire free period = natural variation
 fire suppression

Implications for Ecological Restoration

- Historical fires ranged from low to high severity
- Suppressed many stand-maintaining fires
- Current forest structures = natural processes + fire suppression effects

Should we thin the forest and prescribe fire... to mitigate to reduce fire hazard? to restore the ecosystem?

Conclusions

- Fire is natural and important for forests
- Increased risk of severe fires
 humans impacts, droughts + global warming
- Solutions: mitigation and restoration
- BUT, fires will burn in future

 with positive and negative effects

Acknowledgements

- Thanks to Brad Gooderham, Janneke Lade, Trevor Jones, Jillian Cochrane, and Brent Watson for assistance in the field and lab.
- Funding was provided by NSERC, Tembec, Canfor, Forest Investment Account and Forest Science Programs of BC, and Parks Canada

